Welcome To My Blog


Senin, 21 Januari 2013

Illuminati


The Illuminati (plural of Latin illuminatus, "enlightened") is a name given to several groups, both real (historical) and fictitious. Historically the name refers to the Bavarian Illuminati, an Enlightenment-era secret society founded on May 1, 1776. In more modern contexts the name refers to a purported conspiratorial organization which is alleged to mastermind events and control world affairs through governments and corporations to establish a New World Order. In this context the Illuminati are usually represented as a modern version or continuation of the Bavarian Illuminati.

History

The movement was founded on May 1, 1776, in Ingolstadt (Upper Bavaria) as the Order of the Illuminati, with an initial membership of five,[1] by Jesuit-taught Adam Weishaupt (d. 1830),[2] who was the first lay professor of canon law at the University of Ingolstadt.[3] It was made up of freethinkers as an offshoot of the Enlightenment and seems to have been modeled on the Freemasons.[4] The Illuminati's members took a vow of secrecy and pledged obedience to their superiors. Members were divided into three main classes, each with several degrees, and many Illuminati chapters drew membership from existing Masonic lodges.
Originally Weishaupt had planned the order to be named the "Perfectibilists".[1] The group has also been called the Bavarian Illuminati and its ideology has been called "Illuminism". Many influential intellectuals and progressive politicians counted themselves as members, including Ferdinand of Brunswick and the diplomat Xavier von Zwack, the second-in-command of the order.[5] The order had branches in most European countries: it reportedly had around 2,000 members over the span of ten years.[3] It attracted literary men such as Johann Wolfgang von Goethe and Johann Gottfried Herder and the reigning dukes of Gotha and Weimar.
In 1777 Karl Theodor became ruler of Bavaria. He was a proponent of Enlightened Despotism and his government banned all secret societies including the Illuminati. Internal rupture and panic over succession preceded its downfall, which was affected by the Secular Edict made by the Bavarian government.[3] The March 2, 1785 edict "seems to have been deathblow to the Illuminati in Bavaria." Weishaupt had fled and documents and internal correspondences, seized in 1786 and 1787, were subsequently published by the government in 1787.[6] Von Zwack's home was searched to disclose much of the group's literature.[5]

Barruel and Robison

Between 1797 and 1798 Augustin Barruel's Memoirs Illustrating the History of Jacobinism and John Robison's Proofs of a Conspiracy both publicized the theory that the Illuminati had survived and represented an ongoing international conspiracy, including the claim that it was behind the French Revolution. Both books proved to be very popular, spurring reprints and paraphrases by others[7] (a prime example is Proofs of the Real Existence, and Dangerous Tendency, Of Illuminism by Reverend Seth Payson, published in 1802).[8] Some response was critical, such as Jean-Joseph Mounier's On the Influence Attributed to Philosophers, Free-Masons, and to the Illuminati on the Revolution of France.[citation needed]
Robison and Barruel's works made their way to the United States. Across New England, Reverend Jedidiah Morse and others sermonized against the Illuminati, their sermons were printed, and the matter followed in newspapers. The concern died down in the first decade of the 1800s, though had some revival during the Anti-Masonic movement of the 1820s and 30s.[1]

Modern Illuminati

In addition to the supposed shadowy and secret organization several modern fraternal groups claim to be the "heirs" of the Bavarian Illuminati and have openly used the name "Illuminati" in founding their own rites. Some, such as the multiple groups that call themselves by some variation on "The Illuminati Order",[9][10] use the name directly in the name of their organization, while others, such as the Ordo Templi Orientis, use the name as a grade of initiation within their organization.
See also The Family.

Popular culture

Modern conspiracy theory

Writers such as Mark Dice,[11] David Icke, Texe Marrs, Jüri Lina and Morgan Gricar have argued that the Bavarian Illuminati survived, possibly to this day. Many of these theories propose that world events are being controlled and manipulated by a secret society calling itself the Illuminati.[12][13] Conspiracy theorists have claimed that many notable people were or are members of the Illuminati. Presidents of the United States are a common target for such claims.[14][15]
A key figure in the conspiracy theory movement, Myron Fagan, devoted his latter years to finding evidence that a variety of historical events from Waterloo, The French Revolution, President John F. Kennedy's assassination and an alleged communist plot to hasten the New World Order by infiltrating the Hollywood film industry, were all orchestrated by the Illuminati.[16][17]

Novels

The Illuminati (or fictitious modern groups called the Illuminati) play a central role in the plots of novels, such as The Illuminatus! Trilogy by Robert Shea and Robert Anton Wilson; in Foucault's Pendulum by Umberto Eco; and Angels and Demons by Dan Brown. A mixture of historical fact, established conspiracy theory, or pure fiction, is used to portray them.

 

 


Guglielmo Marconi

 
Guglielmo Marconi (Italian pronunciation: [ɡuʎˈʎɛːlmo marˈkoːni]; 25 April 1874 – 20 July 1937) was an Italian inventor, known as the father of long distance radio transmission[1] and for his development of Marconi's law and a radio telegraph system. Marconi is often credited as the inventor of radio, and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".[2][3][4] As an entrepreneur, businessman, and founder of the The Wireless Telegraph & Signal Company in Britain in 1897, Marconi succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists.[5][6] In 1924, he was ennobled as Marchese Marconi.

Biography

Early years

Marconi was born in Bologna on 25 April 1874, the second son of Giuseppe Marconi, an Italian landowner, and his Irish/Scots wife, Annie Jameson, daughter of Andrew Jameson of Daphne Castle in County Wexford, Ireland and granddaughter of John Jameson, founder of whiskey distillers Jameson & Sons. Marconi was educated privately in Bologna in the lab of Augusto Righi, in Florence at the Istituto Cavallero and, later, in Livorno. As a child Marconi, according to Robert McHenry, did not do well in school.[7] On the contrary, historian Corradi Giuliano in his biography reports that Marconi was a true genius.[8] Baptized as a Catholic, he was also a member of the Anglican Church, being married into it; however, he still received a Catholic annulment.

Radio work

During his early years, Marconi had an interest in science and electricity. One of the scientific developments during this era came from Heinrich Hertz, who, beginning in 1888, demonstrated that one could produce and detect electromagnetic radiation—now generally known as radio waves, at the time more commonly called "Hertzian waves" or "aetheric waves". Hertz's death in 1894 brought published reviews of his earlier discoveries, and a renewed interest on the part of Marconi. He was permitted to briefly study the subject under Augusto Righi, a University of Bologna physicist and neighbour of Marconi who had done research on Hertz's work.

Early experimental devices

Marconi began to conduct experiments, building much of his own equipment in the attic of his home at the Villa Griffone in Pontecchio, Italy, with the help of his butler Mignani. His goal was to use radio waves to create a practical system of "wireless telegraphy"—i.e. the transmission of telegraph messages without connecting wires as used by the electric telegraph. This was not a new idea—numerous investigators had been exploring wireless telegraph technologies for over 50 years, but none had proven technically and commercially successful. Marconi's system had the following components:[9]
  • A relatively simple oscillator, or spark-producing radio transmitter.
  • A wire or capacity area placed at a height above the ground;
  • A coherer receiver, which was a modification of Edouard Branly's original device, with refinements to increase sensitivity and reliability;
  • A telegraph key to operate the transmitter to send short and long pulses, corresponding to the dots-and-dashes of Morse code; and
  • A telegraph register, activated by the coherer, which recorded the received Morse code dots and dashes onto a roll of paper tape.
Similar configurations using spark-gap transmitters plus coherer-receivers had been tried by others, but many were unable to achieve transmission ranges of more than a few hundred metres.
Marconi, just twenty years old, began his first experiments working on his own with the help of his butler Mignani. In the summer of 1894, he built a storm alarm made up of a battery, a coherer, and an electric bell, which went off if there was lightning. Soon after he was able to make a bell ring on the other side of the room by pushing a telegraphic button on a bench.[10]
One night in December, Guglielmo woke his mother up and invited her into his secret workshop and showed her the experiment he had created. The next day he also showed his father, who, when he was certain there were no wires, gave his son all of the money he had in his wallet so Guglielmo could buy more materials. In the summer of 1895 he moved his experimentation outdoors. After increasing the length of the transmitter and receiver antennas, and arranging them vertically, and positioning the antenna so that it touched the ground, the range increased significantly.[11] Soon he was able to transmit signals over a hill, a distance of approximately 2.4 kilometres (1.5 mi).[12] By this point he concluded that with additional funding and research, a device could become capable of spanning greater distances and would prove valuable both commercially and militarily.
Marconi wrote to the ministry of Post and Telegraphs, which at the time was under the direction of the honorable Pietro Lacava, explaining his wireless telegraph machine and asking for funding. He never received a response to his letter which was eventually dismissed by the minister who wrote "to the Longara" on the document, referring to the insane asylum on via della Lungara in Rome.[13] In 1896, Marconi spoke with his family friend Carlo Gardini, the United States consulate in Bologna, about leaving Italy to go to England. Gardini wrote a letter to the Ambassador of Italy in London, Annibale Ferrero, explaining who Marconi was and about this extraordinary discoveries. In his response, ambassador Ferrero advised them not to reveal the results until after they had obtained the copyrights. He also encouraged him to come to England where he believed it would be easier to find the necessary funds to convert the findings from Marconi's experiment into a practical use. Finding little interest in his work in Italy, in early 1896 at the age of 21, Marconi traveled to London, accompanied by his mother, to seek support for his work; Marconi spoke fluent English in addition to Italian. While there, he gained the interest and support of William Preece, the Chief Electrical Engineer of the British Post Office. The apparatus that Marconi possessed at that time was similar to that of one in 1882 by A. E. Dolbear, of Tufts College, which used a spark coil generator and a carbon granular rectifier for reception.[14] A plaque[15] on the outside of BT Centre commemorates Marconi's first public transmission of wireless signals from that site.[16] A series of demonstrations for the British government followed—by March 1897, Marconi had transmitted Morse code signals over a distance of about 6 kilometres (3.7 mi) across the Salisbury Plain. On 13 May 1897, Marconi sent the first ever wireless communication over open sea. It transversed the Bristol Channel from Lavernock Point (South Wales) to Flat Holm Island, a distance of 6 kilometres (3.7 mi). The message read "Are you ready".[17] The receiving equipment was almost immediately relocated to Brean Down Fort on the Somerset coast, stretching the range to 16 kilometres (9.9 mi).
From his Fraserburgh base, he transmitted the first long-distance, cross-country wireless signal to Poldhu in Cornwall.[when?][citation needed]
Impressed by these and other demonstrations, Preece introduced Marconi's ongoing work to the general public at two important London lectures: "Telegraphy without Wires", at the Toynbee Hall on 11 December 1896; and "Signaling through Space without Wires", given to the Royal Institution on 4 June 1897.
Numerous additional demonstrations followed, and Marconi began to receive international attention. In July 1897, he carried out a series of tests at La Spezia in his home country, for the Italian government. A test for Lloyds between Ballycastle and Rathlin Island, Ireland, was conducted on 6 July 1898. The English channel was crossed on 27 March 1899, from Wimereux, France to South Foreland Lighthouse, England, and in the autumn of 1899, the first demonstrations in the United States took place, with the reporting of the America's Cup international yacht races at New York.
Marconi sailed to the United States at the invitation of the New York Herald newspaper to cover the America's Cup races off Sandy Hook, NJ. The transmission was done aboard the SS Ponce, a passenger ship of the Porto Rico Line.[18] Marconi left for England on 8 November 1899 on the American Line's SS St. Paul, and he and his assistants installed wireless equipment aboard during the voyage. On 15 November the St. Paul became the first ocean liner to report her imminent arrival by wireless when Marconi's Needles station contacted her sixty-six nautical miles off the English coast.

Transatlantic transmissions

At the turn of the 20th century, Marconi began investigating the means to signal completely across the Atlantic, in order to compete with the transatlantic telegraph cables. Marconi established a wireless transmitting station at Marconi House, Rosslare Strand, Co. Wexford in 1901 to act as a link between Poldhu in Cornwall and Clifden in Co. Galway. He soon made the announcement that on 12 December 1901, using a 152.4-metre (500 ft) kite-supported antenna for reception, the message was received at Signal Hill in St John's, Newfoundland (now part of Canada) signals transmitted by the company's new high-power station at Poldhu, Cornwall. The distance between the two points was about 3,500 kilometres (2,200 mi). Heralded as a great scientific advance, there was—and continues to be—considerable skepticism about this claim. The exact wavelength used is not known, but it is fairly reliably determined to have been in the neighborhood of 350 meters. The tests took place at a time of day during which the entire transatlantic path was in daylight. We now know (although Marconi did not know then) that this was the worst possible choice. At this medium wavelength, long distance transmission in the daytime is not possible because of heavy absorption of the skywave in the ionosphere. It was not a blind test - Marconi knew in advance to listen for a repetitive signal of three clicks, signifying the Morse code letter S. The clicks were reported to have been heard faintly and sporadically. There was no independent confirmation of the reported reception, and the transmissions were difficult to distinguish from atmospheric noise. (A detailed technical review of Marconi's early transatlantic work appears in John S. Belrose's work of 1995.) The Poldhu transmitter was a two-stage circuit.[21][22]
Marconi operating apparatus similar to that used by him to transmit first wireless signal across Atlantic, 1901.
Feeling challenged by skeptics, Marconi prepared a better organized and documented test. In February 1902, the SS Philadelphia sailed west from Great Britain with Marconi aboard, carefully recording signals sent daily from the Poldhu station. The test results produced coherer-tape reception up to 2,496 kilometres (1,551 mi), and audio reception up to 3,378 kilometres (2,099 mi). The maximum distances were achieved at night, and these tests were the first to show that for mediumwave and longwave transmissions, radio signals travel much farther at night than in the day. During the daytime, signals had only been received up to about 1,125 kilometres (699 mi), less than half of the distance claimed earlier at Newfoundland, where the transmissions had also taken place during the day. Because of this, Marconi had not fully confirmed the Newfoundland claims, although he did prove that radio signals could be sent for hundreds of kilometres, despite some scientists' belief they were essentially limited to line-of-sight distances.
On 17 December 1902, a transmission from the Marconi station in Glace Bay, Nova Scotia, Canada, became the first radio message to cross the Atlantic from North America. In 1901, Marconi built a station near South Wellfleet, Massachusetts that on 18 January 1903 sent a message of greetings from Theodore Roosevelt, the President of the United States, to King Edward VII of the United Kingdom, marking the first transatlantic radio transmission originating in the United States. This station also was one of the first to receive the distress signals coming from the RMS Titanic. However, consistent transatlantic signalling was difficult to establish.
Marconi began to build high-powered stations on both sides of the Atlantic to communicate with ships at sea, in competition with other inventors. In 1904 a commercial service was established to transmit nightly news summaries to subscribing ships, which could incorporate them into their on-board newspapers. A regular transatlantic radio-telegraph service was finally begun on 17 October 1907[23][24] between Clifden Ireland and Glace Bay, but even after this the company struggled for many years to provide reliable communication.

 




 

Logitech

 

Logitech International S.A. is a global provider of personal computer accessories headquartered in Romanel-sur-Morges, Switzerland. The company develops and markets products like peripheral devices for PCs, including keyboards, mice, microphones, game controllers and webcams. Logitech also makes home and computer speakers, headphones, wireless audio devices, as well as audio devices for MP3 players and mobile phones.
In addition to its Swiss headquarters, the company has offices in Newark, California, as well as throughout Europe, Asia and the rest of the Americas. Logitech's sales and marketing activities are organized into four geographic regions: Americas, EMEA, Asia Pacific and China.

Brand names

In the Japanese market, Logitech uses the brand name Logicool[5] since a company known as Logitec (ロジテック rojitekku?) that focuses on computer peripheral devices has existed in that country since 1982, and its parent company, Elecom, has used the brand name since 1974. Similar-sounding trademarks in the same industry can be infringing; Logitech chose to avoid this situation.
In the UK, Logitech trades under 'Logi (UK) Ltd.'; a 'Logitech' based in Glasgow, Scotland manufactures precision cutting, lapping and polishing equipment for the materials processing industry. In Canada, Logitech International uses its own name without conflict with Logitech Electronics, an InterTAN Canada Ltd. supplier of consumer electronics since 1988.
Since the 1980s, Logitech has made computer mice and keyboards directly for Apple, HP, Dell and for other platforms including PlayStation.

History

Logitech International S.A. was co-founded in Apples, Vaud, Switzerland, in 1981 by two Stanford PhD alumni, Daniel Borel and Pierluigi Zappacosta, Jean-luc Mazzone and Giacomo Marini, formerly a manager at Olivetti.
The mass-marketed computer mouse was the product that made Logitech well-known. The range of products offered improvements over a product originally developed at LAMI (École Polytechnique Fédérale de Lausanne) by professor Jean-Daniel Nicoud and engineer André Guignard, who was involved in the design changes of the computer mouse originally invented by Douglas Engelbart.
For a time during its formative years, Logitech's Silicon Valley offices occupied space at 165 University Avenue, Palo Alto, California, home to a number of noted technology startups.[6]
From there, Logitech expanded its product line (see below) to encompass many mass market computer peripherals and beyond (such as the "Harmony" range of programmable universal remote controls).
In 2007, Logitech licensed Hillcrest Labs' Freespace motion control technology to produce the MX Air Mouse, which allows a user to use natural gestures to control a PC.[7][8]
In December 2008, Logitech shipped its one billionth mouse.[9][non-primary source needed]
In May 2010, Logitech, in partnership with Google introduced the Internet enabled television; named Google TV.[10]
In July 2011, Logitech acquired the mobile visual communications provider, Mirial.[11]
Due to the expanding Tablet PC market, the world's biggest maker of computer mice confirmed a significant drop in Q3 2011 operating Income to $23 million from $51 million a year ago.[12]

Production

The first Logitech mice were made in Le Lieu, in the Swiss Canton of Vaud by Dubois Depraz SA.
Production facilities were then established in the US, Taiwan, Ireland and moved subsequently to Suzhou, China. As of 2005, the manufacturing operations in China produce approximately half of Logitech's products. The remaining production is outsourced to contract manufacturers and original design manufacturers in Asia.

Products

  • PC keyboards, mice, gamepads, and trackballs (wired and wireless models).
  • QuickCam webcams including the first webcam to support 1080p video on Skype.[13]
  • PC speakers, including stereo as well as 2.1 and 5.1 channel surround sound systems.
  • Logitech G-Series PC gaming hardware.
  • PS2, PS3, Xbox, Xbox 360 and PSP gaming hardware, including game controllers, joysticks, keyboards and racing wheels.
  • Headphones, headsets and desktop microphones.
  • iPod, PSP, MP3 player and mobile phone accessories. Including iPod and PSP speaker docks.
  • Keyboard Cover for iPad 2 and iPad 3[14]
  • Harmony universal remotes.
  • Squeezebox wireless music systems and adapter.[15]
  • io2 Digital Writing System.
  • Ultimate Ears headphones and in ear monitors.
  • Logitech MOMO Force steering wheel
  • Logitech Alert 750e Outdoor Master System security cameras [16][17]
  • Logitech Alert 750i Indoor Master System security cameras [18]
  • Logitech Attack 3 & Extreme 3D Pro flight simulator joysticks
  • Logitech Washable Keyboard K310[19]
  • Logitech Unifying receiver
  • Logitech UE Boombox[20]
  • Logitech UE Mobile Boombox
  • Logitech UE 9000 Noise-Cancelling Headphones
  • Logitech UE 900 Noise-Isolating Earphones
  • Logitech UE 6000 headphones
  • Logitech UE 4000 headphones
  • Logitech Touchpad T650[21]
  • Logitech Touchpad T620
  • Logitech Zone Touch Mouse T400

  Precision PC game controller            USB speakers                                   Wireless Trackman Mouse


Isaac Newton

Portrait of man in black with shoulder-length, wavy brown hair, a large sharp nose, and a distracted gaze
Sir Isaac Newton PRS MP (25 December 1642 – 20 March 1726) was an English physicist, mathematician, astronomer, natural philosopher, alchemist and theologian who has been considered by many to be the greatest and most influential scientist who ever lived.[8][9] His monograph Philosophiæ Naturalis Principia Mathematica, published in 1687, laid the foundations for most of classical mechanics. In this work, Newton described universal gravitation and the three laws of motion, which dominated the scientific view of the physical universe for the next three centuries. Newton showed that the motion of objects on Earth and that of celestial bodies is governed by the same set of natural laws: by demonstrating the consistency between Kepler's laws of planetary motion and his theory of gravitation he removed the last doubts about heliocentrism and advanced the scientific revolution. The Principia is generally considered to be one of the most important scientific books ever written, both due to the specific physical laws the work successfully described, and for its style, which assisted in setting standards for scientific publication down to the present time.
Newton built the first practical reflecting telescope[10] and developed a theory of colour based on the observation that a prism decomposes white light into the many colours that form the visible spectrum. He also formulated an empirical law of cooling and studied the speed of sound. In mathematics, Newton shares the credit with Gottfried Leibniz for the development of differential and integral calculus. He generalised the binomial theorem to non-integer exponents, developed Newton's method for approximating the roots of a function, and contributed to the study of power series.
Although an unorthodox Christian, Newton was deeply religious and his occult studies took up a substantial part of his life. He secretly rejected Trinitarianism and refused holy orders.[11] As Master of the Mint he effectively placed Britain on its first Gold Standard.

Life

Early life

Isaac Newton was born (according to the Julian calendar in use in England at the time) on Christmas Day, 25 December 1642, (NS 4 January 1643.[1]) at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. He was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Born prematurely, he was a small child; his mother Hannah Ayscough reportedly said that he could have fit inside a quart mug (≈ 1.1 litres). When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabus Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and maintained some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother Smith to burn them and the house over them."[12] Although it was claimed that he was once engaged,[13] Newton never married.

Newton in a 1702 portrait by Godfrey Kneller

Isaac Newton (Bolton, Sarah K. Famous Men of Science. NY: Thomas Y. Crowell & Co., 1889)
From the age of about twelve until he was seventeen, Newton was educated at The King's School, Grantham. He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, where his mother, widowed by now for a second time, attempted to make a farmer of him. He hated farming.[14] Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. Motivated partly by a desire for revenge against a schoolyard bully, he became the top-ranked student.[15] The Cambridge psychologist Simon Baron-Cohen considers it "fairly certain" that Newton had Asperger syndrome.[16]
In June 1661, he was admitted to Trinity College, Cambridge as a sizar – a sort of work-study role.[17] At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers, such as Descartes, and astronomers such as Copernicus, Galileo, and Kepler. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became infinitesimal calculus. Soon after Newton had obtained his degree in August 1665, the university temporarily closed as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student,[18] Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus,[19] optics and the law of gravitation. In 1667, he returned to Cambridge as a fellow of Trinity.[20] Fellows were required to become ordained priests, something Newton desired to avoid due to his unorthodox views. Luckily for Newton, there was no specific deadline for ordination, and it could be postponed indefinitely. The problem became more severe later when Newton was elected for the prestigious Lucasian Chair. For such a significant appointment, ordaining normally could not be dodged. Nevertheless, Newton managed to avoid it by means of a special permission from Charles II (see "Middle years" section below).

Middle years

Mathematics

Newton's work has been said "to distinctly advance every branch of mathematics then studied".[21] His work on the subject usually referred to as fluxions or calculus, seen in a manuscript of October 1666, is now published among Newton's mathematical papers.[22] The author of the manuscript De analysi per aequationes numero terminorum infinitas, sent by Isaac Barrow to John Collins in June 1669, was identified by Barrow in a letter sent to Collins in August of that year as:[23]
Mr Newton, a fellow of our College, and very young ... but of an extraordinary genius and proficiency in these things.
Newton later became involved in a dispute with Leibniz over priority in the development of infinitesimal calculus (the Leibniz–Newton calculus controversy). Most modern historians believe that Newton and Leibniz developed infinitesimal calculus independently, although with very different notations. Occasionally it has been suggested that Newton published almost nothing about it until 1693, and did not give a full account until 1704, while Leibniz began publishing a full account of his methods in 1684. (Leibniz's notation and "differential Method", nowadays recognised as much more convenient notations, were adopted by continental European mathematicians, and after 1820 or so, also by British mathematicians.) Such a suggestion, however, fails to notice the content of calculus which critics of Newton's time and modern times have pointed out in Book 1 of Newton's Principia itself (published 1687) and in its forerunner manuscripts, such as De motu corporum in gyrum ("On the motion of bodies in orbit"), of 1684. The Principia is not written in the language of calculus either as we know it or as Newton's (later) 'dot' notation would write it. But his work extensively uses an infinitesimal calculus in geometric form, based on limiting values of the ratios of vanishing small quantities: in the Principia itself Newton gave demonstration of this under the name of 'the method of first and last ratios'[24] and explained why he put his expositions in this form,[25] remarking also that 'hereby the same thing is performed as by the method of indivisibles'.
Because of this, the Principia has been called "a book dense with the theory and application of the infinitesimal calculus" in modern times[26] and "lequel est presque tout de ce calcul" ('nearly all of it is of this calculus') in Newton's time.[27] His use of methods involving "one or more orders of the infinitesimally small" is present in his De motu corporum in gyrum of 1684[28] and in his papers on motion "during the two decades preceding 1684".[29]
Newton had been reluctant to publish his calculus because he feared controversy and criticism.[30] He was close to the Swiss mathematician Nicolas Fatio de Duillier. In 1691, Duillier started to write a new version of Newton's Principia, and corresponded with Leibniz.[31] In 1693 the relationship between Duillier and Newton deteriorated, and the book was never completed.
Starting in 1699, other members of the Royal Society (of which Newton was a member) accused Leibniz of plagiarism, and the dispute broke out in full force in 1711. The Royal Society proclaimed in a study that it was Newton who was the true discoverer and labelled Leibniz a fraud. This study was cast into doubt when it was later found that Newton himself wrote the study's concluding remarks on Leibniz. Thus began the bitter controversy which marred the lives of both Newton and Leibniz until the latter's death in 1716.[32]
Newton is generally credited with the generalised binomial theorem, valid for any exponent. He discovered Newton's identities, Newton's method, classified cubic plane curves (polynomials of degree three in two variables), made substantial contributions to the theory of finite differences, and was the first to use fractional indices and to employ coordinate geometry to derive solutions to Diophantine equations. He approximated partial sums of the harmonic series by logarithms (a precursor to Euler's summation formula), and was the first to use power series with confidence and to revert power series. Newton's work on infinite series was inspired by Simon Stevin's decimals.[33]
He was appointed Lucasian Professor of Mathematics in 1669 on Barrow's recommendation. In that day, any fellow of Cambridge or Oxford was required to become an ordained Anglican priest. However, the terms of the Lucasian professorship required that the holder not be active in the church (presumably so as to have more time for science). Newton argued that this should exempt him from the ordination requirement, and Charles II, whose permission was needed, accepted this argument. Thus a conflict between Newton's religious views and Anglican orthodoxy was averted.[34]

Optics


A replica of Newton's second Reflecting telescope that he presented to the Royal Society in 1672[35]
From 1670 to 1672, Newton lectured on optics.[36] During this period he investigated the refraction of light, demonstrating that a prism could decompose white light into a spectrum of colours, and that a lens and a second prism could recompose the multicoloured spectrum into white light.[37] Modern scholarship has revealed that Newton's analysis and resynthesis of white light owes a debt to corpuscular alchemy.[38]
He also showed that the coloured light does not change its properties by separating out a coloured beam and shining it on various objects. Newton noted that regardless of whether it was reflected or scattered or transmitted, it stayed the same colour. Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known as Newton's theory of colour.[39]

Illustration of a dispersive prism decomposing white light into the colours of the spectrum, as discovered by Newton
From this work, he concluded that the lens of any refracting telescope would suffer from the dispersion of light into colours (chromatic aberration). As a proof of the concept, he constructed a telescope using a mirror as the objective to bypass that problem.[40] Building the design, the first known functional reflecting telescope, today known as a Newtonian telescope,[40] involved solving the problem of a suitable mirror material and shaping technique. Newton ground his own mirrors out of a custom composition of highly reflective speculum metal, using Newton's rings to judge the quality of the optics for his telescopes. In late 1668[41] he was able to produce this first reflecting telescope. In 1671, the Royal Society asked for a demonstration of his reflecting telescope.[42] Their interest encouraged him to publish his notes On Colour, which he later expanded into his Opticks. When Robert Hooke criticised some of Newton's ideas, Newton was so offended that he withdrew from public debate. Newton and Hooke had brief exchanges in 1679–80, when Hooke, appointed to manage the Royal Society's correspondence, opened up a correspondence intended to elicit contributions from Newton to Royal Society transactions,[43] which had the effect of stimulating Newton to work out a proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). But the two men remained generally on poor terms until Hooke's death.[44]

Facsimile of a 1682 letter from Isaac Newton to Dr William Briggs, commenting on Briggs' "A New Theory of Vision".
Newton argued that light is composed of particles or corpuscles, which were refracted by accelerating into a denser medium. He verged on soundlike waves to explain the repeated pattern of reflection and transmission by thin films (Opticks Bk.II, Props. 12), but still retained his theory of 'fits' that disposed corpuscles to be reflected or transmitted (Props.13). Later physicists instead favoured a purely wavelike explanation of light to account for the interference patterns, and the general phenomenon of diffraction. Today's quantum mechanics, photons and the idea of wave–particle duality bear only a minor resemblance to Newton's understanding of light.
In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. The contact with the theosophist Henry More, revived his interest in alchemy. He replaced the ether with occult forces based on Hermetic ideas of attraction and repulsion between particles. John Maynard Keynes, who acquired many of Newton's writings on alchemy, stated that "Newton was not the first of the age of reason: He was the last of the magicians."[45] Newton's interest in alchemy cannot be isolated from his contributions to science.[5] This was at a time when there was no clear distinction between alchemy and science. Had he not relied on the occult idea of action at a distance, across a vacuum, he might not have developed his theory of gravity. (See also Isaac Newton's occult studies.)
In 1704, Newton published Opticks, in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another, ...and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?"[46] Newton also constructed a primitive form of a frictional electrostatic generator, using a glass globe (Optics, 8th Query).
In an article entitled "Newton, prisms, and the 'opticks' of tunable lasers[47] it is indicated that Newton in his book Opticks was the first to show a diagram using a prism as a beam expander. In the same book he describes, via diagrams, the use of multiple-prism arrays. Some 278 years after Newton's discussion, multiple-prism beam expanders became central to the development of narrow-linewidth tunable lasers. Also, the use of these prismatic beam expanders led to the multiple-prism dispersion theory.[47]

Mechanics and gravitation


Newton's own copy of his Principia, with hand-written corrections for the second edition
In 1679, Newton returned to his work on (celestial) mechanics, i.e., gravitation and its effect on the orbits of planets, with reference to Kepler's laws of planetary motion. This followed stimulation by a brief exchange of letters in 1679–80 with Hooke, who had been appointed to manage the Royal Society's correspondence, and who opened a correspondence intended to elicit contributions from Newton to Royal Society transactions.[43] Newton's reawakening interest in astronomical matters received further stimulus by the appearance of a comet in the winter of 1680–1681, on which he corresponded with John Flamsteed.[48] After the exchanges with Hooke, Newton worked out a proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). Newton communicated his results to Edmond Halley and to the Royal Society in De motu corporum in gyrum, a tract written on about 9 sheets which was copied into the Royal Society's Register Book in December 1684.[49] This tract contained the nucleus that Newton developed and expanded to form the Principia.
The Principia was published on 5 July 1687 with encouragement and financial help from Edmond Halley. In this work, Newton stated the three universal laws of motion that enabled many of the advances of the Industrial Revolution which soon followed and were not to be improved upon for more than 200 years, and are still the underpinnings of the non-relativistic technologies of the modern world. He used the Latin word gravitas (weight) for the effect that would become known as gravity, and defined the law of universal gravitation.
In the same work, Newton presented a calculus-like method of geometrical analysis by 'first and last ratios', gave the first analytical determination (based on Boyle's law) of the speed of sound in air, inferred the oblateness of the spheroidal figure of the Earth, accounted for the precession of the equinoxes as a result of the Moon's gravitational attraction on the Earth's oblateness, initiated the gravitational study of the irregularities in the motion of the moon, provided a theory for the determination of the orbits of comets, and much more.
Newton made clear his heliocentric view of the solar system – developed in a somewhat modern way, because already in the mid-1680s he recognised the "deviation of the Sun" from the centre of gravity of the solar system.[50] For Newton, it was not precisely the centre of the Sun or any other body that could be considered at rest, but rather "the common centre of gravity of the Earth, the Sun and all the Planets is to be esteem'd the Centre of the World", and this centre of gravity "either is at rest or moves uniformly forward in a right line" (Newton adopted the "at rest" alternative in view of common consent that the centre, wherever it was, was at rest).[51]
Newton's postulate of an invisible force able to act over vast distances led to him being criticised for introducing "occult agencies" into science.[52] Later, in the second edition of the Principia (1713), Newton firmly rejected such criticisms in a concluding General Scholium, writing that it was enough that the phenomena implied a gravitational attraction, as they did; but they did not so far indicate its cause, and it was both unnecessary and improper to frame hypotheses of things that were not implied by the phenomena. (Here Newton used what became his famous expression "hypotheses non fingo"[53]).
With the Principia, Newton became internationally recognised.[54] He acquired a circle of admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier, with whom he formed an intense relationship. This abruptly ended in 1693, and at the same time Newton suffered a nervous breakdown.[55]

Classification of cubics

Besides the work of Newton and others on calculus, the first important demonstration of the power of analytic geometry was Newton's classification of cubic curves in the Euclidean plane in the late 1600s. He divided them into four types, satisfying different equations, and in 1717 Stirling, probably with Newton's help, proved that every cubic was one of these four. Newton also claimed that the four types could be obtained by plane projection from one of them, and this was proved in 1731.[56]

Later life


Isaac Newton in old age in 1712, portrait by Sir James Thornhill
In the 1690s, Newton wrote a number of religious tracts dealing with the literal interpretation of the Bible. Henry More's belief in the Universe and rejection of Cartesian dualism may have influenced Newton's religious ideas. A manuscript he sent to John Locke in which he disputed the existence of the Trinity.[57] It was published in 1785.[58] Later works – The Chronology of Ancient Kingdoms Amended (1728) and Observations Upon the Prophecies of Daniel and the Apocalypse of St. John (1733) – were published after his death. He also devoted a great deal of time to alchemy (see above).
Newton was also a member of the Parliament of England from 1689 to 1690 and in 1701, but according to some accounts his only comments were to complain about a cold draught in the chamber and request that the window be closed.[59]
Newton moved to London to take up the post of warden of the Royal Mint in 1696, a position that he had obtained through the patronage of Charles Montagu, 1st Earl of Halifax, then Chancellor of the Exchequer. He took charge of England's great recoining, somewhat treading on the toes of Lord Lucas, Governor of the Tower (and securing the job of deputy comptroller of the temporary Chester branch for Edmond Halley). Newton became perhaps the best-known Master of the Mint upon the death of Thomas Neale in 1699, a position Newton held for the last 30 years of his life.[60][61] These appointments were intended as sinecures, but Newton took them seriously, retiring from his Cambridge duties in 1701, and exercising his power to reform the currency and punish clippers and counterfeiters. As Master of the Mint in 1717 in the "Law of Queen Anne" Newton moved the Pound Sterling de facto from the silver standard to the gold standard by setting the bimetallic relationship between gold coins and the silver penny in favour of gold. This caused silver sterling coin to be melted and shipped out of Britain. Newton was made President of the Royal Society in 1703 and an associate of the French Académie des Sciences. In his position at the Royal Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by prematurely publishing Flamsteed's Historia Coelestis Britannica, which Newton had used in his studies.[62]

Personal coat of arms of Sir Isaac Newton[63]
In April 1705, Queen Anne knighted Newton during a royal visit to Trinity College, Cambridge. The knighthood is likely to have been motivated by political considerations connected with the Parliamentary election in May 1705, rather than any recognition of Newton's scientific work or services as Master of the Mint.[64] Newton was the second scientist to be knighted, after Sir Francis Bacon.
Towards the end of his life, Newton took up residence at Cranbury Park, near Winchester with his niece and her husband, until his death in 1726.[65] His half-niece, Catherine Barton Conduitt,[66] served as his hostess in social affairs at his house on Jermyn Street in London; he was her "very loving Uncle,"[67] according to his letter to her when she was recovering from smallpox.
Newton died in his sleep in London on 20 March 1726 (OS 20 March 1726; NS 31 March 1727)[1] and was buried in Westminster Abbey. A bachelor, he had divested much of his estate to relatives during his last years, and died intestate. After his death, Newton's hair was examined and found to contain mercury, probably resulting from his alchemical pursuits. Mercury poisoning could explain Newton's eccentricity in late life.[68]

After death

Fame

The mathematician Joseph-Louis Lagrange often said that Newton was the greatest genius who ever lived, and once added that Newton was also "the most fortunate, for we cannot find more than once a system of the world to establish."[69] English poet Alexander Pope was moved by Newton's accomplishments to write the famous epitaph:
Nature and nature's laws lay hid in night;
God said "Let Newton be" and all was light.
Newton himself had been rather more modest of his own achievements, famously writing in a letter to Robert Hooke in February 1676:
If I have seen further it is by standing on the shoulders of giants.[70]
Two writers think that the above quote, written at a time when Newton and Hooke were in dispute over optical discoveries, was an oblique attack on Hooke (said to have been short and hunchbacked), rather than – or in addition to – a statement of modesty.[71][72] On the other hand, the widely known proverb about standing on the shoulders of giants published among others by 17th-century poet George Herbert (a former orator of the University of Cambridge and fellow of Trinity College) in his Jacula Prudentum (1651), had as its main point that "a dwarf on a giant's shoulders sees farther of the two", and so its effect as an analogy would place Newton himself rather than Hooke as the 'dwarf'.
In a later memoir, Newton wrote:
I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.[73]
Albert Einstein kept a picture of Newton on his study wall alongside ones of Michael Faraday and James Clerk Maxwell.[74] Newton remains influential to today's scientists, as demonstrated by a 2005 survey of members of Britain's Royal Society (formerly headed by Newton) asking who had the greater effect on the history of science, Newton or Einstein. Royal Society scientists deemed Newton to have made the greater overall contribution.[75] In 1999, an opinion poll of 100 of today's leading physicists voted Einstein the "greatest physicist ever;" with Newton the runner-up, while a parallel survey of rank-and-file physicists by the site PhysicsWeb gave the top spot to Newton.[76]

Commemorations


Newton statue on display at the Oxford University Museum of Natural History
Newton's monument (1731) can be seen in Westminster Abbey, at the north of the entrance to the choir against the choir screen, near his tomb. It was executed by the sculptor Michael Rysbrack (1694–1770) in white and grey marble with design by the architect William Kent. The monument features a figure of Newton reclining on top of a sarcophagus, his right elbow resting on several of his great books and his left hand pointing to a scroll with a mathematical design. Above him is a pyramid and a celestial globe showing the signs of the Zodiac and the path of the comet of 1680. A relief panel depicts putti using instruments such as a telescope and prism.[77] The Latin inscription on the base translates as:
Here is buried Isaac Newton, Knight, who by a strength of mind almost divine, and mathematical principles peculiarly his own, explored the course and figures of the planets, the paths of comets, the tides of the sea, the dissimilarities in rays of light, and, what no other scholar has previously imagined, the properties of the colours thus produced. Diligent, sagacious and faithful, in his expositions of nature, antiquity and the holy Scriptures, he vindicated by his philosophy the majesty of God mighty and good, and expressed the simplicity of the Gospel in his manners. Mortals rejoice that there has existed such and so great an ornament of the human race! He was born on 25 December 1642, and died on 20 March 1726/7. — Translation from G.L. Smyth, The Monuments and Genii of St. Paul's Cathedral, and of Westminster Abbey (1826), ii, 703–4.[77]
From 1978 until 1988, an image of Newton designed by Harry Ecclestone appeared on Series D £1 banknotes issued by the Bank of England (the last £1 notes to be issued by the Bank of England). Newton was shown on the reverse of the notes holding a book and accompanied by a telescope, a prism and a map of the Solar System.[78]

Eduardo Paolozzi's Newton, after William Blake (1995), outside the British Library
A statue of Isaac Newton, looking at an apple at his feet, can be seen at the Oxford University Museum of Natural History. A large bronze statue, Newton, after William Blake, by Eduardo Paolozzi, dated 1995 and inspired by Blake's etching, dominates the piazza of the British Library in London.

In popular culture

Personal life

Newton never married, and no evidence has been uncovered that he had any romantic relationship.[citation needed] Although it is impossible to verify, it is commonly believed that he died a virgin, as has been commented on by such figures as mathematician Charles Hutton,[79] economist John Maynard Keynes,[80] and physicist Carl Sagan.[81]
French writer and philosopher Voltaire, who was in London at the time of Newton's funeral, claimed to have verified the fact, writing that "I have had that confirmed by the doctor and the surgeon who were with him when he died"[82] (allegedly he stated on his deathbed that he was a virgin[83][unreliable source?][84]). In 1733, Voltaire publicly stated that Newton "had neither passion nor weakness; he never went near any woman".[85][86]
Newton did have a close friendship with the Swiss mathematician Nicolas Fatio de Duillier, whom he met in London around 1690.[87] Their friendship came to an unexplained end in 1693. Some of their correspondence has survived.

Religious views

In a minority view, T.C. Pfizenmaier argues that Newton held the Eastern Orthodox view on the Trinity rather than the Western one held by Roman Catholics, Anglicans and most Protestants.[88] However, this type of view 'has lost support of late with the availability of Newton's theological papers',[89] and now most scholars identify Newton as an Antitrinitarian monotheist.[6][90] 'In Newton's eyes, worshipping Christ as God was idolatry, to him the fundamental sin'.[91] Historian Stephen D. Snobelen says of Newton, "Isaac Newton was a heretic. But ... he never made a public declaration of his private faith—which the orthodox would have deemed extremely radical. He hid his faith so well that scholars are still unravelling his personal beliefs."[6] Snobelen concludes that Newton was at least a Socinian sympathiser (he owned and had thoroughly read at least eight Socinian books), possibly an Arian and almost certainly an anti-trinitarian.[6] In an age notable for its religious intolerance, there are few public expressions of Newton's radical views, most notably his refusal to receive holy orders and his refusal, on his death bed, to receive the sacrament when it was offered to him.[6]
Although the laws of motion and universal gravitation became Newton's best-known discoveries, he warned against using them to view the Universe as a mere machine, as if akin to a great clock. He said, "Gravity explains the motions of the planets, but it cannot explain who set the planets in motion. God governs all things and knows all that is or can be done."[92]
Along with his scientific fame, Newton's studies of the Bible and of the early Church Fathers were also noteworthy. Newton wrote works on textual criticism, most notably An Historical Account of Two Notable Corruptions of Scripture. He placed the crucifixion of Jesus Christ at 3 April, AD 33, which agrees with one traditionally accepted date.[93] He also tried unsuccessfully to find hidden messages within the Bible.
Newton wrote more on religion than he did on natural science.[citation needed] He believed in a rationally immanent world, but he rejected the hylozoism implicit in Leibniz and Baruch Spinoza. The ordered and dynamically informed Universe could be understood, and must be understood, by an active reason. In his correspondence, Newton claimed that in writing the Principia "I had an eye upon such Principles as might work with considering men for the belief of a Deity".[94] He saw evidence of design in the system of the world: "Such a wonderful uniformity in the planetary system must be allowed the effect of choice". But Newton insisted that divine intervention would eventually be required to reform the system, due to the slow growth of instabilities.[95] For this, Leibniz lampooned him: "God Almighty wants to wind up his watch from time to time: otherwise it would cease to move. He had not, it seems, sufficient foresight to make it a perpetual motion."[96] Newton's position was vigorously defended by his follower Samuel Clarke in a famous correspondence. A century later, Pierre-Simon Laplace's work "Celestial Mechanics" had a natural explanation for why the planet orbits don't require periodic divine intervention.[97]

Effect on religious thought

Newton and Robert Boyle's mechanical philosophy was promoted by rationalist pamphleteers as a viable alternative to the pantheists and enthusiasts, and was accepted hesitantly by orthodox preachers as well as dissident preachers like the latitudinarians.[98] The clarity and simplicity of science was seen as a way to combat the emotional and metaphysical superlatives of both superstitious enthusiasm and the threat of atheism,[99] and at the same time, the second wave of English deists used Newton's discoveries to demonstrate the possibility of a "Natural Religion".

Newton, by William Blake; here, Newton is depicted critically as a "divine geometer".
The attacks made against pre-Enlightenment "magical thinking", and the mystical elements of Christianity, were given their foundation with Boyle's mechanical conception of the Universe. Newton gave Boyle's ideas their completion through mathematical proofs and, perhaps more importantly, was very successful in popularising them.[100] Newton refashioned the world governed by an interventionist God into a world crafted by a God that designs along rational and universal principles.[101] These principles were available for all people to discover, allowed people to pursue their own aims fruitfully in this life, not the next, and to perfect themselves with their own rational powers.[102]
Newton saw God as the master creator whose existence could not be denied in the face of the grandeur of all creation.[103][104][105] His spokesman, Clarke, rejected Leibniz' theodicy which cleared God from the responsibility for l'origine du mal by making God removed from participation in his creation, since as Clarke pointed out, such a deity would be a king in name only, and but one step away from atheism.[106] But the unforeseen theological consequence of the success of Newton's system over the next century was to reinforce the deist position advocated by Leibniz.[107] The understanding of the world was now brought down to the level of simple human reason, and humans, as Odo Marquard argued, became responsible for the correction and elimination of evil.[108]

End of the world

In a manuscript he wrote in 1704 in which he describes his attempts to extract scientific information from the Bible, he estimated that the world would end no earlier than 2060. In predicting this he said, "This I mention not to assert when the time of the end shall be, but to put a stop to the rash conjectures of fanciful men who are frequently predicting the time of the end, and by doing so bring the sacred prophesies into discredit as often as their predictions fail."

Enlightenment philosophers

Enlightenment philosophers chose a short history of scientific predecessors – Galileo, Boyle, and Newton principally – as the guides and guarantors of their applications of the singular concept of Nature and Natural Law to every physical and social field of the day. In this respect, the lessons of history and the social structures built upon it could be discarded.[110]
It was Newton's conception of the Universe based upon Natural and rationally understandable laws that became one of the seeds for Enlightenment ideology.[111] Locke and Voltaire applied concepts of Natural Law to political systems advocating intrinsic rights; the physiocrats and Adam Smith applied Natural conceptions of psychology and self-interest to economic systems; and sociologists criticised the current social order for trying to fit history into Natural models of progress. Monboddo and Samuel Clarke resisted elements of Newton's work, but eventually rationalised it to conform with their strong religious views of nature.

Royal Mint

As Warden, and afterwards Master, of the Royal Mint, Newton estimated that 20 percent of the coins taken in during The Great Recoinage of 1696 were counterfeit. Counterfeiting was high treason, punishable by the felon's being hanged, drawn and quartered. Despite this, convicting the most flagrant criminals could be extremely difficult. However, Newton proved to be equal to the task.[112] Disguised as a habitué of bars and taverns, he gathered much of that evidence himself.[113] For all the barriers placed to prosecution, and separating the branches of government, English law still had ancient and formidable customs of authority. Newton had himself made a justice of the peace in all the home counties—there is a draft of a letter regarding this matter stuck into Newton's personal first edition of his Philosophiæ Naturalis Principia Mathematica which he must have been amending at the time.[114] Then he conducted more than 100 cross-examinations of witnesses, informers, and suspects between June 1698 and Christmas 1699. Newton successfully prosecuted 28 coiners.[115]
One of Newton's cases as the King's attorney was against William Chaloner.[116] Chaloner's schemes included setting up phony conspiracies of Catholics and then turning in the hapless conspirators whom he had entrapped. Chaloner made himself rich enough to posture as a gentleman. Petitioning Parliament, Chaloner accused the Mint of providing tools to counterfeiters (a charge also made by others). He proposed that he be allowed to inspect the Mint's processes in order to improve them. He petitioned Parliament to adopt his plans for a coinage that could not be counterfeited, while at the same time striking false coins.[117] Newton put Chaloner on trial for counterfeiting and had him sent to Newgate Prison in September 1697. But Chaloner had friends in high places, who helped him secure an acquittal and his release.[116] Newton put him on trial a second time with conclusive evidence. Chaloner was convicted of high treason and hanged, drawn and quartered on 23 March 1699 at Tyburn gallows.[118]
As a result of a report written by Newton on 21 September 1717 to the Lords Commissioners of His Majesty's Treasury the bimetallic relationship between gold coins and silver coins was changed by Royal proclamation on 22 December 1717, forbidding the exchange of gold guineas for more than 21 silver shillings.[119][120] This inadvertently resulted in a silver shortage as silver coins were used to pay for imports, while exports were paid for in gold, effectively moving Britain from the silver standard to its first gold standard. It is a matter of debate as whether he intended to do this or not.[121] It has been argued that Newton conceived of his work at the Mint as a continuation of his alchemical work.

Laws of motion

In the Principia, Newton gives the famous three laws of motion, stated here in modern form.
Newton's First Law (also known as the Law of Inertia) states that an object at rest tends to stay at rest and that an object in uniform motion tends to stay in uniform motion unless acted upon by a net external force. The meaning of this law is the existence of reference frames (called inertial frames) where objects not acted upon by forces move in uniform motion (in particular, they may be at rest).
Newton's Second Law states that an applied force, \mathbf{F}, on an object equals the rate of change of its momentum, \mathbf{p}, with time. Mathematically, this is expressed as
 \mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{\mathrm{d}}t} = \frac{\mathrm{d} (m\mathbf{v})}{\mathrm{\mathrm{d}}t}.
Since the law applies only to systems of constant mass,[123] m can be brought out of the derivative operator. By substitution using the definition of acceleration, the equation can be written in the iconic form
 \mathbf{F} = m \mathbf{a}.
The first and second laws represent a break with the physics of Aristotle, in which it was believed that a force was necessary in order to maintain motion. They state that a force is only needed in order to change an object's state of motion. The SI unit of force is the newton, named in Newton's honour.
Newton's Third Law states that for every action there is an equal and opposite reaction. This means that any force exerted onto an object has a counterpart force that is exerted in the opposite direction back onto the first object. A common example is of two ice skaters pushing against each other and sliding apart in opposite directions. Another example is the recoil of a firearm, in which the force propelling the bullet is exerted equally back onto the gun and is felt by the shooter. Since the objects in question do not necessarily have the same mass, the resulting acceleration of the two objects can be different (as in the case of firearm recoil).
Unlike Aristotle's, Newton's physics is meant to be universal. For example, the second law applies both to a planet and to a falling stone.
The vector nature of the second law addresses the geometrical relationship between the direction of the force and the manner in which the object's momentum changes. Before Newton, it had typically been assumed that a planet orbiting the Sun would need a forward force to keep it moving. Newton showed instead that all that was needed was an inward attraction from the Sun. Even many decades after the publication of the Principia, this counterintuitive idea was not universally accepted, and many scientists preferred Descartes' theory of vortices.

Apple incident

Reputed descendants of Newton's apple tree, at the Cambridge University Botanic Garden and the Instituto Balseiro library garden
Newton himself often told the story that he was inspired to formulate his theory of gravitation by watching the fall of an apple from a tree.[125] Although it has been said that the apple story is a myth and that he did not arrive at his theory of gravity in any single moment,[126] acquaintances of Newton (such as William Stukeley, whose manuscript account of 1752 has been made available by the Royal Society)[127] do in fact confirm the incident, though not the cartoon version that the apple actually hit Newton's head. Stukeley recorded in his Memoirs of Sir Isaac Newton's Life a conversation with Newton in Kensington on 15 April 1726:[128]
... We went into the garden, & drank tea under the shade of some appletrees, only he, & myself. amidst other discourse, he told me, he was just in the same situation, as when formerly, the notion of gravitation came into his mind. "why should that apple always descend perpendicularly to the ground," thought he to him self: occasion'd by the fall of an apple, as he sat in a comtemplative mood: "why should it not go sideways, or upwards? but constantly to the earths centre? assuredly, the reason is, that the earth draws it. there must be a drawing power in matter. & the sum of the drawing power in the matter of the earth must be in the earths centre, not in any side of the earth. therefore dos this apple fall perpendicularly, or toward the centre. if matter thus draws matter; it must be in proportion of its quantity. therefore the apple draws the earth, as well as the earth draws the apple."
John Conduitt, Newton's assistant at the Royal Mint and husband of Newton's niece, also described the event when he wrote about Newton's life:[129]
In the year 1666 he retired again from Cambridge to his mother in Lincolnshire. Whilst he was pensively meandering in a garden it came into his thought that the power of gravity (which brought an apple from a tree to the ground) was not limited to a certain distance from earth, but that this power must extend much further than was usually thought. Why not as high as the Moon said he to himself & if so, that must influence her motion & perhaps retain her in her orbit, whereupon he fell a calculating what would be the effect of that supposition.
In similar terms, Voltaire wrote in his Essay on Epic Poetry (1727), "Sir Isaac Newton walking in his gardens, had the first thought of his system of gravitation, upon seeing an apple falling from a tree."
It is known from his notebooks that Newton was grappling in the late 1660s with the idea that terrestrial gravity extends, in an inverse-square proportion, to the Moon; however it took him two decades to develop the full-fledged theory.[130] The question was not whether gravity existed, but whether it extended so far from Earth that it could also be the force holding the Moon to its orbit. Newton showed that if the force decreased as the inverse square of the distance, one could indeed calculate the Moon's orbital period, and get good agreement. He guessed the same force was responsible for other orbital motions, and hence named it "universal gravitation".
Various trees are claimed to be "the" apple tree which Newton describes. The King's School, Grantham, claims that the tree was purchased by the school, uprooted and transported to the headmaster's garden some years later. The staff of the [now] National Trust-owned Woolsthorpe Manor dispute this, and claim that a tree present in their gardens is the one described by Newton. A descendant of the original tree[131] can be seen growing outside the main gate of Trinity College, Cambridge, below the room Newton lived in when he studied there. The National Fruit Collection at Brogdale[132] can supply grafts from their tree, which appears identical to Flower of Kent, a coarse-fleshed cooking variety.